article figure image

Amy E. Medlock, PhD

  • AU/UGA Medical Partnership

    Assistant Professor of Biochemistry

  • Curriculum Vitae

Amy Medlock, PhD serves as an Assistant Professor in the Department of Biochemistry and Molecular Biology at the University of Georgia where her research focuses on heme synthesis. Medlock teaches medical Biochemistry at the AU/UGA Medical Partnership.

Education

1994 BS Chemistry Erskine College
2000 PhD Biochemistry University of Georgia

Residency

2001-2003, 2004-2009 Postdoctoral Associate University of Georgia
2003-2004 Postdoctoral Fellow Univsity of Cape Town, South Africa

Academic Appointments

2009-Present Assistant Professor, AU/UGA Medical Partnership
2001-2009 Part-time Instructor, University of Georgia

More About Amy Medlock

Medlock received her Ph.D. in Biochemistry and Molecular Biology from the University of Georgia where she studied the terminal enzymes of the heme biosynthetic pathway.  She carried out postdoctoral studies at both the University of Georgia and the University of Cape Town where she continued to study heme synthesis and a group of diseases called the porphyrias.  The current work in her laboratory deals with the biosynthesis of heme and it regulation. Heme is an essential cofactor for almost all living organisms and participates in a variety of reactions including the regulation central metabolic processes, oxygen binding and transport and reduction/oxidation reactions. While a great deal is known in reference to heme synthesis, much less is known about intra- and intercellular trafficking of pathway substrates and products. The current studies in her laboratory include the identification and characterization of porphyrin and heme transporters and understanding the spatial and temporal regulation of heme synthesis in eukaryotes. Revealing the complete picture of total body heme homeostasis is important in understanding the role of heme in organismal growth and development and may impact the treatment of diseases including anemias, porphyrias, cancers and infectious diseases.

  • Expertise & Interests

    • Heme Biosynthesis
    • Heme Trafficking
    • Erythropoiesis
    • Biochemistry Education
  • Research Interests

    1. Iron metabolism in relation to heme synthesis

    2. Heme productions during erythropoiesis

    3. Regulation of heme synthesis and heme transport

    3. Reaction mechanisms of ferrochelatase

    4. Integration of Biochemistry in medical education via nutrition

  • Selected Publications

    Managing Micronutrient Nutrition: The Vitamin B12 Exemplar, A. Medlock,                 G. Crites, J. Stowe, MedEdPORTAL 2014. Available from:www.mededportal.org/publication/9771 

    Just-in-Time Teaching (JiTT): An Active Learning Pedagogy to Study Concepts in Cell Biology,V. T. Gaddy and A. E. Medlock, Med Sci Educ 2013, 23 (4), 664-665.

    Porphyrin Metabolism, M. Shepherd, A. E. Medlock and H. A. Dailey, chapter in Encyclopedia of Biological Chemistry, 2nd Ed., ed. Lennarz, W., Lane, D. M. and Perkins, M. (2013), Elsevier, 544-549.

    Mitochondrial Atpif1 regulates heme synthesis in developing erythroblasts, D. I. Shah, N. Takahashi-Makise, J. D. Cooney, L. Li, I. J. Schultz, E. L. Pierce, A. Narla, S. M. Hattangadi, A. E. Medlock, N. B. Langer, T. A. Dailey, S. N. Hurst, D. Faccenda, J. M. Wiwczar, S. K. Heggers, G. Vogin, W. Chen, C. Chen, D. R. Campagna, C. Brugnara, Y. Zhou, B. L. Elbert, N. N. Danial, M. D. Fleming, D. M. Ward, M. Campanella, , H. A. Dailey, J. Kaplan, and B. H. Paw, Nature 2012, 491(7425), 608-612.

    Identification and Characterization of Solvent-Filled Channels in Human Ferrochelatase, A. E Medlock,W. Najahi-Missaoui, T. A. Ross, T. A. Dailey, J. Burch, J. R. O’Brien, W. N. Lanzilotta and H. A. Dailey, Biochemistry 2012, 51 (27), 5422-5433.

    Product Release Rather than Chelation Determines Metal Specificity for Ferrochelatase, A. E. Medlock, M. Carter, T. A. Dailey, H. A. Dailey, and W. N. Lanzilotta, J Mol Biol 2009, 393(2), 308-319.

    Regulation of Mammalian Heme Biosynthesis, A. E. Medlock and H. A. Dailey, chapter in Tetrapyrroles: Birth, Life and Death, ed. Warren, M. J. and Smith, A.G. 2009, Landes Bioscience and Springer Science + Business Media, 116-127.

    A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase, A. E. Medlock, T. A. Dailey, T. A. Ross, H. A Dailey and W. N. Lanzilotta J Mol Biol 2007, 373(4) 1006-1016.

    Altered orientation of active site residues in variants of human ferrochelatase. Evidence for a hydrogen bond network involved in catalysis, H. A. Dailey, C. -K. Wu, P. Horanyi, A. E. Medlock, W. Najahi-Missaoui, A. E. Burden, T. A. Dailey and J. Rose Biochemistry 2007, 46(27), 7973-7979.

    Substrate interactions with human ferrochelatase, A. Medlock, L. Swartz, T. A. Dailey, H. A. Dailey, and W. N. Lanzilotta Proc Natl Acad Sci     U S A 2007, 104(6), 1789-1793.

    The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis, C. Pondarre, B. B. Antiochos, D. R. Campagna, S. L Clarke, E. L. Greer, K. M. Deck, A. McDonald, A. P. Han, A. Medlock, J. L. Kutok, S. A. Anderson, R. S. Eisenstein and M. D. Fleming Hum Mol Genet 2006, 15(6), 953-964.

    A Mouse Model for South African (R59W) variegate porphyria:  Construction and initial characterization, A. E. Medlock, P. N. Meissner, B. P. Davidson, A. V. Corrigall and H. A. Dailey Cell Mol Biol 2002, 48, 71-78.

    Ferrochelatase at the millennium: structures, mechanisms, and [2Fe-2S] cluster, H. A. Dailey, T. A. Dailey, C.- K. Wu, A. E. Medlock and K.-F. Wang Cell Mol Life Sci 2000, 57,1909-1926.

    Examination of the Activity of Carboxyl-Terminal Chimeric Constructs of Human and Yeast Ferrochelatases, A. E. Medlock and H. A. Dailey Biochemistry 2000, 39, 7461-7467.

    Resonance Raman Spectra of Ferrochelatase Reveal Porphyrin Distortion upon Metal Binding, M. E. Blackwood, Jr. T. S. Rush, III, A. Medlock, H. A. Dailey, and T. G. Spiro J Am Chem Soc 1997, 119, 12170-12174. 

    Human Coproporphyrinogen Oxidase Is Not a Metalloprotein, A. E. Medlock and H. A. Dailey J Biol Chem 1996, 271, 32507-32510.

  • Affiliations

    • American Society for Biochemistry and Molecular Biology
    • American Heart Association
    • International BioIron Society
  • Of Note

    Grant Support:

    • Provost Summer Research Funds, University of Georgia, Office of the Provost, Role PI, “Role of Progesterone Receptor Membrane Component 1 in Erythropoiesis”, June 2014-August 2014, $5,000 - ongoing Grant-in-Aid, American Heart Association, Greater Southeastern Affiliate, Role PI, “Total Body Heme Homeostasis in Zebrafish”, July 2012-December 2014, $165,000 - ongoing
    • Grant-in-Aid, American Heart Association, Greater Southeastern Affiliate, Role PI, “Total Body Heme Homeostasis in Zebrafish”, July 2012-December 2014, $165,000 - ongoing
    • Provost Summer Research Funds, University of Georgia, Office of the Provost, Role PI, “Identification of Regulators and Transporters of Heme”, June 2012-August 2012, $2,500 - completed Faculty Research Grant, University of Georgia, Office of the Vice President for Research, Role PI, “Zebrafish as a model for heme homeostasis”, Janyuary 2010-December 2010, $10,0000 – completed
    • Health Science Faculty Postdoctoral Research Fellowship, University of Cape Town, Supervisor: Peter N. Meissner “A Detailed Characterization of the R59W(+/-) Variegate Porphyria Mouse Model”, May 2003-August 2004, R150,000 - completed